Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3362, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637534

RESUMEN

Capturing gaseous mercury (Hg0) from sulfur dioxide (SO2)-containing flue gases remains a common yet persistently challenge. Here we introduce a low-temperature sulfur chemical vapor deposition (S-CVD) technique that effectively converts SO2, with intermittently introduced H2S, into deposited sulfur (Sd0) on metal sulfides (MS), facilitating self-sustained adsorption of Hg0. ZnS, as a representative MS model, undergoes a decrease in the coordination number of Zn-S from 3.9 to 3.5 after Sd0 deposition, accompanied by the generation of unsaturated-coordinated polysulfide species (Sn2-, named Sd*) with significantly enhanced Hg0 adsorption performance. Surprisingly, the adsorption product, HgS (ZnS@HgS), can serve as a fresh interface for the activation of Sd0 to Sd* through the S-CVD method, thereby achieving a self-sustained Hg0 adsorption capacity exceeding 300 mg g-1 without saturation limitations. Theoretical calculations substantiate the self-sustained adsorption mechanism that S8 ring on both ZnS and ZnS@HgS can be activated to chemical bond S4 chain, exhibiting a stronger Hg0 adsorption energy than pristine ones. Importantly, this S-CVD strategy is applicable to the in-situ activation of synthetic or natural MS containing chalcophile metal elements for Hg0 removal and also holds potential applications for various purposes requiring MS adsorbents.

2.
Environ Sci Technol ; 58(15): 6704-6715, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38574268

RESUMEN

The transformation of toxic arsine (AsH3) gas into valuable elemental arsenic (As0) from industrial exhaust gases is important for achieving sustainable development goals. Although advanced arsenic removal catalysts can improve the removal efficiency of AsH3, toxic arsenic oxides generated during this process have not received adequate attention. In light of this, a novel approach for obtaining stable As0 products was proposed by performing controlled moderate oxidation. We designed a tailored Ni-based catalyst through an acid etching approach to alter interactions between Ni and NaY. As a result, the 1Ni/NaY-H catalyst yielded an unprecedented proportion of As0 as the major product (65%), which is superior to those of other reported catalysts that only produced arsenic oxides. Density functional theory calculations clarified that Ni species changed the electronic structure of oxygen atoms, and the formed [NiIII-OH (µ-O)] active centers facilitated the adsorption of AsH2*, AsH*, and As* reaction intermediates for As-H bond cleavage, thereby decreasing the direct reactivity of oxygen with the arsenic intermediates. This work presents pioneering insights into inhibiting excessive oxidation during AsH3 removal, demonstrating potential environmental applications for recovery of As0 from toxic AsH3.


Asunto(s)
Arsénico , Zeolitas , Níquel/química , Electrones , Oxígeno , Gases
3.
Artículo en Inglés | MEDLINE | ID: mdl-38527651

RESUMEN

OBJECTIVE: KRAS G12V is one of the most common KRAS mutation variants in lung adenocarcinoma (LUAD), and yet its prognostic value is still unrevealed. In this study, we investigated the clinicopathologic characteristics and prognostic value of the KRAS G12V mutation in LUAD. METHODS: Data of 3829 patients who underwent LUAD resection between 2008 and 2020 were collected. Mutations were classified as wild-type, G12V, or non-G12V. The clinicopathologic characteristics, postoperative outcomes, and recurrence pattern were analyzed among groups. RESULTS: In total, 3554 patients were wild-type and 275 patients harbored a KRAS mutation: 60 patients with G12V (22.2%) and 215 patients with non-G12V (77.8%). The KRAS G12V mutation was more frequent in male patients, older patients (≥60 years), former/current smokers, those patients with radiologic solid nodules, and those with highly invasive histologic subtypes. Tumors carrying KRAS G12V mutation exhibited elevated programmed death-ligand 1 expression in comparison with wild-type tumors. KRAS G12V was more prevalent in older patients and had less lymphovascular invasion compared with other mutation types. FGF3, RET, and KDR co-mutations occurred more frequently in the KRAS G12V group. Multivariate analysis demonstrated that the KRAS G12V mutation was an independent prognostic factor in stage Ⅰ tumors, whereas the KRAS non-G12V mutation was not. KRAS G12V was associated with early recurrence and locoregional recurrence. CONCLUSIONS: The KRAS G12V mutation was associated with aggressive clinical-pathologic phenotype and early recurrence. To note, this mutation exhibited a significantly worse prognosis in patients with part-solid and stage Ⅰ lung adenocarcinoma. Meanwhile, the prognostic significance of KRAS G12C and G12V variants was comparable.

4.
Mater Horiz ; 11(8): 1889-1898, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38372122

RESUMEN

Developing reliable solid sorbents for efficient capture and removal of trace sulfur dioxide (SO2) under ambient conditions is critical for industrial desulfurization operations, but poses a great challenge. Herein, we focus on SNFSIX-Cu-TPA, a highly stable fluorinated MOF that utilizes SnF62- as pillars, for effectively capturing SO2 at extremely low pressures. The exceptional affinity of SNFSIX-Cu-TPA towards SO2 over CO2 and N2 was demonstrated through single-component isotherms and corroborated by computational simulations. At 298 K and 0.002 bar, this material displays a remarkable gas uptake of 2.22 mmol g-1. Among various anion fluorinated MOFs, SNFSIX-Cu-TPA shows the highest SO2/MF62- of 1.39 mmol mmol-1 and exhibits a low Qst of 58.81 kJ mol-1. Additionally, SNFSIX-Cu-TPA displays excellent potential for SO2/CO2 separation, as evidenced by its ideal adsorbed solution theory (IAST) selectivity of 148 at a molar fraction of SO2 of 0.01. Dynamic breakthrough curves were obtained to reveal the effective removal of trace SO2 from simulated flue gas (SO2/CO2/N2; v/v/v 0.2/10/89.8) with a high dynamic capacity of up to 1.52 mmol g-1. Furthermore, in situ TGA demonstrated the efficient and reversible capture of 500 ppm SO2 over 20 adsorption-desorption tests. This durable material presents a rare combination of exceptional SO2 capturing performance, good adsorption selectivity, and mild regeneration, thus making it a good candidate for a realistic desulfurization process.

5.
Environ Sci Technol ; 58(1): 960-969, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38150269

RESUMEN

SO2 reduction with CH4 to produce elemental sulfur (S8) or other sulfides is typically challenging due to high energy barriers and catalyst poisoning by SO2. Herein, we report that a comproportionation reaction (CR) induced by H2S recirculating significantly accelerates the reactions, altering reaction pathways and enabling flexible adjustment of the products from S8 to sulfides. Results show that SO2 can be fully reduced to H2S at a lower temperature of 650 °C, compared to the 800 °C required for the direct reduction (DR), effectively eliminating catalyst poisoning. The kinetic rate constant is significantly improved, with CR at 650 °C exhibiting about 3-fold higher value than DR at 750 °C. Additionally, the apparent activation energy decreases from 128 to 37 kJ/mol with H2S, altering the reaction route. This CR resolves the challenges related to robust sulfur-oxygen bond activation and enhances CH4 dissociation. During the process, the well-dispersed lamellar MoS2 crystallites with Co promoters (CoMoS) act as active species. H2S facilitates the comproportionation reaction, reducing SO2 to a nascent sulfur (Sx*). Subsequently, CH4 efficiently activates CoMoS in the absence of SO2, forming H2S. This shifts the mechanism from Mars-van Krevelen (MvK) in DR to sequential Langmuir-Hinshelwood (L-H) and MvK in CR. Additionally, it mitigates sulfation poisoning through this rapid activation reaction pathway. This unique comproportionation reaction provides a novel strategy for efficient sulfur resource utilization.


Asunto(s)
Metano , Dióxido de Azufre , Metano/química , Sulfuros/química , Temperatura , Azufre/química , Oxidación-Reducción
6.
Environ Sci Technol ; 57(50): 21272-21283, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38051813

RESUMEN

Cobalt-based catalysts have been identified for effective CO oxidation, but their activity is limited by molecular O2 and interfacial oxygen passivation at low temperatures. Optimization of the d-band structure of the cobalt center is an effective method to enhance the dissociation of oxygen species. Here, we developed a novel Co/FeOx catalyst based on selective cationic deposition to anchor Co cations at the defect site of FeOx, which exhibited superior intrinsic low-temperature activity (100%, 115 °C) compared to that of Pt/Co3O4 (100%, 140 °C) and La/Co2O3 (100%, 150 °C). In contrast to catalysts with oxygen defects, the cationic Fe defect in Co/FeOx showed an exceptional ability to accept electrons from the Co 3d orbital, resulting in significant electron delocalization at the Co sites. The Co/FeOx catalyst exhibited a remarkable turnover frequency of 178.6 per Co site per second, which is 2.3 times higher than that of most previously reported Co-based catalysts. The d-band center is shifted upward by electron redistribution effects, which promotes the breaking of the antibonding orbital *π of the O═O bond. In addition, the controllable regulation of the Fe-Ov-Co oxygen defect sites enlarges the Fe-O bond from 1.97 to 2.02 Å to activate the lattice oxygen. Moreover, compared to CoxFe3-xO4, Co/FeOx has a lower energy barrier for CO oxidation, which significantly accelerates the rate-determining step, *COO formation. This study demonstrates the feasibility of modulating the d-band structure to enhance O2 molecular and interfacial lattice oxygen activation.


Asunto(s)
Nanoestructuras , Cationes , Cobalto , Electrónica , Oxígeno
7.
Environ Sci Technol ; 57(48): 20431-20439, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37992298

RESUMEN

The interaction between mercury (Hg) and inorganic compounds, including selenium (Se), sulfur (S), and halogens (X = Cl, Br, or I), plays a critical role in the global mercury cycle. However, most previously reported mercury compounds are susceptible to reduction, leading to the release of elemental mercury (Hg0) and causing secondary pollution. In this study, we unveil a groundbreaking discovery that underscores the vital role of halogenation in creating exceptionally stable Hg3Se2X2 compounds. Through the dynamic interplay of Hg, Se, and halogens, an intermediary stage denoted [HgSe]m[HgX2]n emerges, and this transformative process significantly elevates the stabilization of mercury. Remarkably, halogen ions strategically occupy pores at the periphery of HgSe clusters, engendering a more densely packed atomic arrangement of Hg, Se, and halogen components. A marked enhancement in both thermal and acid stability is observed, wherein temperatures ascend from 130 to 300 °C (transitioning from HgSe to Hg3Se2Cl2). This sequence of escalating stability follows the order HgSe < Hg3Se2I2 < Hg3Se2Br2 < Hg3Se2Cl2 for thermal resilience, complemented by virtually absent acid leaching. This innovative compound formation fundamentally alters the transformation pathways of gaseous Hg0 and ionic mercury (Hg2+), resulting in highly efficient in situ removal of both Hg0 and Hg2+ ions. These findings pave the way for groundbreaking advancements in mercury stabilization and environmental remediation strategies, offering a comprehensive solution through the creation of chemically stable precipitates.


Asunto(s)
Compuestos de Mercurio , Mercurio , Selenio , Mercurio/química , Halogenación , Halógenos , Iones , Compuestos de Mercurio/química
8.
Environ Sci Technol ; 57(45): 17566-17576, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37906097

RESUMEN

Low-temperature catalytic oxidation is of significance to the degradation of halogenated volatile organic compounds (HVOCs) to avoid hazardous byproducts with low energy consumption. Efficient molecular oxygen (O2) activation is pivotal to it but usually limited by the insufficient electron cloud density at the metal center. Herein, Ru-B catalysts with enhanced electron density around Ru were designed to achieve efficient O2 activation, realizing dibromomethane (DBM) degradation T90 at 182 °C on RuB1/TiO2 (about 30 °C lower than pristine Ru/TiO2) with a TOFRu value of 0.055 s-1 (over 8 times that of Ru/TiO2). Compared to the limited electron transfer (0.02 e) on pristine Ru/TiO2, the Ru center gained sufficient negative charges (0.31 e) from BOx via strong p-d orbital hybridization. The Ru-B site then acted as the electron donor complexing with the 2π* antibonding orbital of O2 to realize the O2 dissociative activation. The reactive oxygen species formed thereby could initiate a fast conversion and oxidation of formate intermediates, thus eventually boosting the low-temperature catalytic activity. Furthermore, we found that the Ru-B sites for O2 activation have adaptation for pollutant removal and multiple metal availability. Our study shed light on robust O2 activation catalyst design based on electron density adjustment by boron.


Asunto(s)
Boro , Electrones , Temperatura , Metales
9.
Environ Sci Technol ; 57(29): 10882-10890, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37436147

RESUMEN

Gaseous elemental mercury (Hg0) extraction from industrial flue gases is undergoing intense research due to its unique properties. Selective adsorption that renders Hg0 to HgO or HgS over metal oxide- or sulfide-based sorbents is a promising method, yet the sorbents are easily poisoned by sulfur dioxide (SO2) and H2O vapor. The Se-Cl intermediate derived from SeO2 and HCl driven by SO2 has been demonstrated to stabilize Hg0. Thus, a surface-induced method was put forward when using γ-Al2O3 supported selenite-chloride (xSeO32--yCl-, named xSe-yCl) for mercury deposition. Results confirmed that under 3000 ppm SO2 and 4% H2O, Se-2Cl exhibited the highest induced adsorption performance at 160 °C and higher humidity can accelerate the induction process. Driven by SO2 under the wet interface, the in situ generated active Se0 has high affinity toward Hg0, and the introduction of Cl- enabled the fast-trapping and stabilization of Hg0 due to its intercalation in the HgSe product. Additionally, the long-time scale-up experiment showed a gradient color change of the Se-2Cl-induced surface, which maintained almost 100% Hg0 removal efficiency over 180 h with a normalized adsorption capacity of 157.26 mg/g. This surface-induced method has the potential for practical application and offers a guideline for reversing the negative effect of SO2 on gaseous pollutant removal.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Mercurio , Dióxido de Azufre , Mercurio/análisis , Cloruros , Óxidos , Adsorción , Contaminantes Atmosféricos/análisis
10.
ACS Appl Mater Interfaces ; 15(20): 24701-24712, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37167560

RESUMEN

Ruthenium (Ru)-based catalysts have been candidates in hydrochlorination for vinyl chloride monomer (VCM) production, yet they are limited by efficient acetylene (C2H2) utilization. The strong adsorption performance of HCl can deactivate Ru active sites which resulted in weak C2H2 adsorption and slow activation kinetics. Herein, we designed a channel that employed metal-organic framework (MOF)-encaged Ru single atoms to achieve rapid adsorption and activation of C2H2. Low-Ru (∼0.5 wt %) single-atom catalysts (named Ru-NC@MIL) were assembled by hydrogen-bonding nanotraps (the H-C≡C-Hδ+···Oδ- interactions between C2H2 and carboxylate groups/furan rings). Results confirmed that C2H2 could easily enter the encapsulation channels in an optimal mode perpendicular to the channel with a potential energy of 42.3 kJ/mol. The harvested C2H2 molecules can be quickly passed to Ru-N4 active sites for activation by stretching the length of carbon-carbon triple bonds (C≡C) to 1.212 Å. Such a strategy guaranteed >99% C2H2 conversion efficiency and >99% VCM selectivity. Moreover, a stable long-term (>150 h) catalysis with high efficiency (∼0.85 kgvcm/h/kgcat.) and a low deactivation constant (0.001 h-1) was also achieved. This work provides an innovative strategy for precise C2H2 adsorption and activation and guidance for designing multi-functional Ru-based catalysts.

11.
Sci Total Environ ; 891: 164203, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37230360

RESUMEN

The steel smelting process produces extensive CO2 and Ca-containing steel slag (SS). Meanwhile, the low value utilization of steel slag results in the loss of Ca resources. CO2 sequestration utilizing SS can reduce carbon emissions while achieving Ca circulation. However, conventional SS carbon sequestration methods suffer from slow reaction rates, finite Ca usage efficiency, and difficulty separating the CaCO3 product from SS. Herein, an innovative two-step leaching (TSL) and carbonation method was presented based on the variations in leaching efficiency of activated Ca under different conditions, aiming at efficient leaching, carbon sequestration, and high-value reuse of SS. This method employed two NH4Cl solutions in sequence for two leaching operations on SS, allowing the Ca leaching rate to be effectively increased. According to the findings, TSL could increase the activated Ca leaching rate by 26.9 % and achieve 223.15 kg CO2/t SS sequestration compared to the conventional one-step leaching (CSL) method. If part of the CaCO3 is recovered as a slagging agent, about 34.1 % of the exogenous Ca introduction could be saved. In addition, the CO2 sequestration of TSL did not significantly decrease after 8 cycles. This work proposes a strategy that has the potential for recycling SS and reducing carbon emissions.

12.
Environ Sci Technol ; 57(13): 5424-5432, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36939455

RESUMEN

Flue gas mercury removal is mandatory for decreasing global mercury background concentration and ecosystem protection, but it severely suffers from the instability of traditional demercury products (e.g., HgCl2, HgO, HgS, and HgSe). Herein, we demonstrate a superstable Hg3Se2Cl2 compound, which offers a promising next-generation flue gas mercury removal strategy. Theoretical calculations revealed a superstable Hg bonding structure in Hg3Se2Cl2, with the highest mercury dissociation energy (4.71 eV) among all known mercury compounds. Experiments demonstrate its unprecedentedly high thermal stability (>400 °C) and strong acid resistance (5% H2SO4). The Hg3Se2Cl2 compound could be produced via the reduction of SeO32- to nascent active Se0 by the flue gas component SO2 and the subsequent combination of Se0 with Hg0 and Cl- ions or HgCl2. During a laboratory-simulated experiment, this Hg3Se2Cl2-based strategy achieves >96% removal efficiencies of both Hg0 and HgCl2 enabling nearly zero Hg0 re-emission. As expected, real mercury removal efficiency under Se-rich industrial flue gas conditions is much more efficient than Se-poor counterparts, confirming the feasibility of this Hg3Se2Cl2-based strategy for practical applications. This study sheds light on the importance of stable demercury products in flue gas mercury treatment and also provides a highly efficient and safe flue gas demercury strategy.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Mercurio/análisis , Ecosistema , Gases/química , Contaminantes Atmosféricos/análisis
13.
J Hazard Mater ; 446: 130681, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36584652

RESUMEN

Arsenic is extremely toxic to humans with water as its carrier. One challenge for arsenic control is the complete elimination of As(III) due to its high toxicity, mobility, and solubility. Herein, an active FeSx@MOF-808 composite was fabricated to enhance the As(III) removal for wastewater remediation. The FeSx@MOF-808 showed better As(III) adsorptive performance (Qe = 73.60 mg/g) compared with Fe2S3 (Qe=12.38 mg/g), MOF-808 (Qe = 27.85 mg/g), and Fe@MOF-808 (Qe=34.26 mg/g). This can be attributed to an improved porous structure provided by MOF-808 and abundant reactive sites provided by FeSx. Calculated by the Langmuir model (R2 =0.9965), the maximum adsorption capacity (Qmax) of FeSx@MOF-808 for As(III) removal at 298 K and pH = 7 was 203.28 ± 6.43 mg/g, which is beyond most of the traditional materials and MOFs. Additionally, FeSx@MOF-808 exhibited good stability in a wide pH range (1-13). Results also showed that the different Fe/S ratios (1:0-1:8) and FeSx loading amount (0.00625-0.25 mmol) have effects on the FeSx@MOF-808 performance. By kinetics studies, XPS, and DFT calculation, the mechanisms for arsenic by FeSx@MOF-808 were proposed. Multiple reaction mechanisms combine the adsorption by the MOF-808 support, the co-precipitation of iron oxides via hydroxyl (Fe-OH) groups, and most importantly, the precipitation through the break of Fe-S and the bond of As-S.

14.
Environ Sci Technol ; 56(14): 10402-10411, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35815997

RESUMEN

Slip NH3 is a priority pollutant of concern to be removed in various flue gases with NOx and CO after denitrification using NH3-SCR or NH3-SNCR, and the simultaneous catalytic removal of NH3 and CO has become one of the new topics in the deep treatment of such flue gases. Synergistic catalytic oxidation of CO and NH3 appears to be a promising method but still has many challenges. Due to the competition for active oxidizing species, CO was supposed to hinder the NH3 selective catalytic oxidation (NH3-SCO). However, it is first found that CO could significantly promote NH3-SCO over the CuOx-CeO2 catalyst. The NH3 conversion rates increased linearly with CO concentrations in the range of 180-300 °C. Specifically, it accelerated by 2.8 times with 10,000 ppm CO inflow at 220 °C. Mechanism studies found that the Cu-O-Ce solid solution was more active for CO oxidation, while the CuOx species facilitated the NH3 dehydrogenation and mitigated the competition of NH3 and CO, further stabilizing the promotion effects. Gaseous CO boosted the generation of active isolated oxygen atoms (Oi) by actuating the Cu+/Cu2+ redox cycle. The enriched Oi facilitated oxidation of NH3 to NO and was conducive to the NH3-SCO via the i-SCR approach. This study tapped the potential of CO for promoting simultaneous catalytic oxidation of coexisting pollutants in the flue gas.


Asunto(s)
Amoníaco , Gases , Catálisis , Cobre , Oxidación-Reducción
15.
Environ Sci Technol ; 56(15): 10935-10944, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35867955

RESUMEN

Sulfur trioxide (SO3) is an unstable pollutant, and its removal from the gas phase of industrial flue gas remains a significant challenge. Herein, we propose a reverse conversion treatment (RCT) strategy to reduce S(VI) in SO3 to S(IV) by combining bench-scale experiments and theoretical studies. We first demonstrated that metastable sulfides can break the S-O bond in SO3, leading to the re-formation of sulfur dioxide (SO2). The RCT performance varied between mono- and binary-metal sulfides, and metastable CuS had a high SO3 conversion efficiency in the temperature range of 200-300 °C. Accordingly, the introduction of selenium (Se) lowered the electronegativity of the CuS host and enhanced its reducibility to SO3. Among the CuSe1-xSx composites, CuSe0.3S0.7 was the optimal RCT material and reached a SO2 yield of 6.25 mmol/g in 120 min. The low-valence state of selenium (Se2-/Se1-) exhibited a higher reduction activity for SO3 than did S2-/S1-; however, excessive Se doping degraded the SO3 conversion owing to the re-oxidation of SO2 by the generated SeO32-. The density functional theory calculations verified the stronger SO3 adsorption performance (Eads = -2.76 eV) and lower S-O bond breaking energy (Ea = 1.34 eV) over CuSe0.3S0.7 compared to those over CuS and CuSe. Thus, CuSe1-xSx can serve as a model material and the RCT strategy can make use of field temperature conditions in nonferrous smelters for SO3 emission control.

16.
J Hazard Mater ; 436: 129038, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739690

RESUMEN

Sulfidation has been an efficient method for arsenic (As) removal from acid wastewater, yet it is inefficient under neutral and weak acid conditions. The higher pH values resulted in the formation of the unstable As-S precipitates, especially employing Na2S as the vulcanizing agent as it can increase the pH value dramatically. Here, we found that SO2 exhibited excellent multi-roles in As removal when applying H2S-sulfidation method. The acidification effect of SO2 lead to the decreasing of pH values, guaranteed the stable As-S precipitates formation. Through the SO2 pre-treatment method, the results indicated that the pH values decreased from 7 to 2.8, with the increased H2S utilization efficiencies for As(III) removal from 20.9% to 92.0%. Moreover, SO2 post-treatment not only increased the As(III) removal efficiency, but also eliminated the excessive sulfides in solution. The reaction mechanism analysis indicated that the liquid comproportionation reaction between SO2 and excessive sulfides plays a vital role. The generated nascent sulfur (N-S0) can adsorb arsenic species and promote the agglomeration of As(III)-S precipitates. Furthermore, the SO2 and H2S co-treatment exhibited excellent As(V) removal performance. This study provides a new alternative method to improve the H2S-sulfidation process with SO2 for As removal from wastewater.


Asunto(s)
Arsénico , Aguas Residuales , Sulfuros , Azufre
17.
Environ Sci Pollut Res Int ; 29(47): 71721-71730, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35599289

RESUMEN

Oxidation-reduction-absorption based on sulfite is a promising process for simultaneous removal of NOx and SO2. However, excessive oxidation of sulfite and competitive absorption between NOx and SO2 limit its application. A matching strategy between antioxidants and alkaline agents has been proposed to solve these problems and enhance the absorption process. The comparison results of inhibitors showed that hydroquinone exhibited long-term high-efficiency inhibition of S(IV) (SO32-/HSO3-) oxidation. The comparison of alkaline agents showed that the Na2SO3 solution with heterogeneous mixture of MgO and hydroquinone exhibited better absorption performance than that with other combinations. The absorption amounts of NOx in 0.15 mol/L Na2SO3 50 mL solution added 0.1% hydroquinone (HQ) with 0.09 mol/L MgO were 2.24 mmol, which improved 5 times than that without additives. In addition, studies on the influence of pH showed that the pH of MgO mixture could be stabilized at 9-10 for a long time, while the pH of Na2CO3 mixture decreased faster. Further studies suggested that the hydration of MgO resulted in the solution with MgO keeping high pH. This is also the main reason why the combination of MgO and hydroquinone is superior to the combination of Na2CO3 and hydroquinone in desulfurization and denitration performance.


Asunto(s)
Hidroquinonas , Dióxido de Azufre , Iones , Óxido de Magnesio , Oxidación-Reducción , Sodio , Sulfitos
18.
Environ Sci Technol ; 56(4): 2689-2698, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35113560

RESUMEN

The remarkable chemical activity of metal-sulfur clusters lies in their unique spatial configuration associated with the abundant unsaturated-coordination nature of sulfur sites. Yet, the manipulation of sulfur sites normally requires direct contact with other metal atoms, which inevitably changes the state of the coordinated sulfur. Herein, we facilely construct a Mn-Sn2S6 framework by regulating the sulfur environment of the [Sn2S6]4- cluster with metal ions. Mn-Sn2S6 showed superior removal performance to gaseous elemental mercury (Hg0) at low temperatures (20-60 °C) and exhibited high resistance against SO2. Moreover, Mn-Sn2S6 can completely remove liquid Hg2+ ions with low or high concentrations from acid wastewater. In addition, the adsorption capacities of Mn-Sn2S6 toward Hg0 and Hg2+ reached 21.05 and 413.3 mg/g, respectively. The results of physico-chemical characterizations revealed that compared with Cu2+, Co2+, and Fe2+, the moderate regulation of Mn2+ led to the special porous spherical structure of Mn-Sn2S6 with uniform element distribution, due to the difference of electrode potentials [Eθ(Mn2+/Mn) < Eθ(S/S2-) < Eθ(Sn4+/Sn2+)]. The porous structure was beneficial to Hg0 and Hg2+ adsorption, and the presence of Mn4+/Mn3+ and S1- promoted the oxidation of Hg0, resulting in stable HgS species. The constructed Mn-Sn2S6, thus, is a promising sorbent for both Hg0 ang Hg2+ removal and provides guidelines for cluster-based materials design and tuning.


Asunto(s)
Mercurio , Adsorción , Iones , Metales , Azufre
19.
J Hazard Mater ; 423(Pt A): 127118, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34523480

RESUMEN

Adsorption is a superior method for removing and recycling high concentration of mercury from nonferrous metal smelting flue gas, especially adsorbents with good sulfur resistance and large adsorption capacity. In this study, Co and Mn oxide-modified layered ITQ-2 zeolites were designed to capture and recycle elemental mercury (Hg0). The physicochemical characteristics of the adsorbents were characterized using BET, XRD, FESEM, TEM, and XPS, and the results showed that Mn/ITQ-2 zeolite has a large specific surface area, and MnOx was highly dispersed on ITQ-2 zeolite. The Hg0 removal efficiency and adsorption capacity of the 5%Mn/ITQ-2 zeolite at 300 °C were 97% and 2.04 mg/g in 600 min, respectively, much higher than those of the previously reported 5%Mn/MCM-22 zeolite. The 2%Co-2%Mn/ITQ-2 zeolite exhibited a higher SO2 resistance performance. The mechanism of Hg0 removal was concluded to be driven by the primary catalytic oxidation of MnOx, secondary oxidation of active chlorine, and concurrent chemisorption. However, the Hg0 adsorption capacity was determined by the specific surface area and pore structure of ITQ-2. The 2%Co-2%Mn/ITQ-2 zeolite exhibited a high SO2 resistance performance. The Mn/ITQ-2 and Co-Mn/ITQ-2 zeolites have excellent regenerability and reusability, which can realize mercury recycling from flue gas.

20.
J Environ Sci (China) ; 115: 1-9, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34969439

RESUMEN

Fe3O4-based materials are widely used for magnetic separation from wastewater. However, they often suffer from Fe-leaching behavior under acidic conditions, decreasing their activity and limiting sustainable practical applications. In this study, covalent organic frameworks (COFs) were used as the shell to protect the Fe3O4 core, and the Fe3O4@COF core-shell composites were synthesized for As(III) removal from acid wastewater. The imine-linked COFs can in situ grow on the surface of the Fe3O4 core layer by layer with [COFs/Fe3O4]mol ratio of up to 2:1. The Fe-leaching behavior was weakened over a wide pH range of 1-13. Moreover, such composites keep their magnetic characteristic, making them favorable for nanomaterial separation. As(III) batch adsorption experiments results indicated that, when COFs are used as the shell for the Fe3O4 core, a balance between As(III) removal efficiencies and the thickness of the COF shell exists. Higher As(III) removal efficiencies are obtained when the [COFs/Fe3O4]mol ratios were < 1.5:1, but thicker COF shells were not beneficial for As(III) removal. Such composites also exhibited better As(III) removal performances in the pH range of 1-7. Over a wide pH range, the zeta potential of Fe3O4@COF core-shell composites becomes more positive, which benefits the capture of negative arsenic ions. In addition, thinner surface COFs were favorable for mass transfer and facilitating the reaction of Fe and As elements. Our study highlights the promise of using COFs in nanomaterial surface protection and achieving As(III) depth removal under acidic conditions.


Asunto(s)
Estructuras Metalorgánicas , Fenómenos Magnéticos , Magnetismo , Extracción en Fase Sólida , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...